Serveur d'exploration sur la COVID en France

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study.

Identifieur interne : 001157 ( Main/Exploration ); précédent : 001156; suivant : 001158

Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study.

Auteurs : Abdelhafid Zeroual [Algérie] ; Fouzi Harrou [Arabie saoudite] ; Abdelkader Dairi [Algérie] ; Ying Sun [Arabie saoudite]

Source :

RBID : pubmed:32834633

Abstract

The novel coronavirus (COVID-19) has significantly spread over the world and comes up with new challenges to the research community. Although governments imposing numerous containment and social distancing measures, the need for the healthcare systems has dramatically increased and the effective management of infected patients becomes a challenging problem for hospitals. Thus, accurate short-term forecasting of the number of new contaminated and recovered cases is crucial for optimizing the available resources and arresting or slowing down the progression of such diseases. Recently, deep learning models demonstrated important improvements when handling time-series data in different applications. This paper presents a comparative study of five deep learning methods to forecast the number of new cases and recovered cases. Specifically, simple Recurrent Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), Gated recurrent units (GRUs) and Variational AutoEncoder (VAE) algorithms have been applied for global forecasting of COVID-19 cases based on a small volume of data. This study is based on daily confirmed and recovered cases collected from six countries namely Italy, Spain, France, China, USA, and Australia. Results demonstrate the promising potential of the deep learning model in forecasting COVID-19 cases and highlight the superior performance of the VAE compared to the other algorithms.

DOI: 10.1016/j.chaos.2020.110121
PubMed: 32834633
PubMed Central: PMC7362800


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study.</title>
<author>
<name sortKey="Zeroual, Abdelhafid" sort="Zeroual, Abdelhafid" uniqKey="Zeroual A" first="Abdelhafid" last="Zeroual">Abdelhafid Zeroual</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of technology, Department of electrical engineering, University of 20 August 1955, Skikda 21000, Algeria.</nlm:affiliation>
<country xml:lang="fr">Algérie</country>
<wicri:regionArea>Faculty of technology, Department of electrical engineering, University of 20 August 1955, Skikda 21000</wicri:regionArea>
<wicri:noRegion>Skikda 21000</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>LAIG Laboratory, University of 08 May 1945, Guelma 24000, Algeria.</nlm:affiliation>
<country xml:lang="fr">Algérie</country>
<wicri:regionArea>LAIG Laboratory, University of 08 May 1945, Guelma 24000</wicri:regionArea>
<wicri:noRegion>Guelma 24000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Harrou, Fouzi" sort="Harrou, Fouzi" uniqKey="Harrou F" first="Fouzi" last="Harrou">Fouzi Harrou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900</wicri:regionArea>
<wicri:noRegion>23955-6900</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dairi, Abdelkader" sort="Dairi, Abdelkader" uniqKey="Dairi A" first="Abdelkader" last="Dairi">Abdelkader Dairi</name>
<affiliation wicri:level="3">
<nlm:affiliation>University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), Computer Science department Signal, image and speech laboratory (SIMPA) laboratory, El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria.</nlm:affiliation>
<country xml:lang="fr">Algérie</country>
<wicri:regionArea>University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), Computer Science department Signal, image and speech laboratory (SIMPA) laboratory, El Mnaouar, BP 1505, Bir El Djir 31000, Oran</wicri:regionArea>
<placeName>
<settlement type="city">Oran</settlement>
<region nuts="2">Wilaya d'Oran</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Ying" sort="Sun, Ying" uniqKey="Sun Y" first="Ying" last="Sun">Ying Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900</wicri:regionArea>
<wicri:noRegion>23955-6900</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32834633</idno>
<idno type="pmid">32834633</idno>
<idno type="doi">10.1016/j.chaos.2020.110121</idno>
<idno type="pmc">PMC7362800</idno>
<idno type="wicri:Area/Main/Corpus">000501</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000501</idno>
<idno type="wicri:Area/Main/Curation">000501</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000501</idno>
<idno type="wicri:Area/Main/Exploration">000501</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study.</title>
<author>
<name sortKey="Zeroual, Abdelhafid" sort="Zeroual, Abdelhafid" uniqKey="Zeroual A" first="Abdelhafid" last="Zeroual">Abdelhafid Zeroual</name>
<affiliation wicri:level="1">
<nlm:affiliation>Faculty of technology, Department of electrical engineering, University of 20 August 1955, Skikda 21000, Algeria.</nlm:affiliation>
<country xml:lang="fr">Algérie</country>
<wicri:regionArea>Faculty of technology, Department of electrical engineering, University of 20 August 1955, Skikda 21000</wicri:regionArea>
<wicri:noRegion>Skikda 21000</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>LAIG Laboratory, University of 08 May 1945, Guelma 24000, Algeria.</nlm:affiliation>
<country xml:lang="fr">Algérie</country>
<wicri:regionArea>LAIG Laboratory, University of 08 May 1945, Guelma 24000</wicri:regionArea>
<wicri:noRegion>Guelma 24000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Harrou, Fouzi" sort="Harrou, Fouzi" uniqKey="Harrou F" first="Fouzi" last="Harrou">Fouzi Harrou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900</wicri:regionArea>
<wicri:noRegion>23955-6900</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dairi, Abdelkader" sort="Dairi, Abdelkader" uniqKey="Dairi A" first="Abdelkader" last="Dairi">Abdelkader Dairi</name>
<affiliation wicri:level="3">
<nlm:affiliation>University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), Computer Science department Signal, image and speech laboratory (SIMPA) laboratory, El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria.</nlm:affiliation>
<country xml:lang="fr">Algérie</country>
<wicri:regionArea>University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), Computer Science department Signal, image and speech laboratory (SIMPA) laboratory, El Mnaouar, BP 1505, Bir El Djir 31000, Oran</wicri:regionArea>
<placeName>
<settlement type="city">Oran</settlement>
<region nuts="2">Wilaya d'Oran</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Ying" sort="Sun, Ying" uniqKey="Sun Y" first="Ying" last="Sun">Ying Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900</wicri:regionArea>
<wicri:noRegion>23955-6900</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chaos, solitons, and fractals</title>
<idno type="ISSN">0960-0779</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The novel coronavirus (COVID-19) has significantly spread over the world and comes up with new challenges to the research community. Although governments imposing numerous containment and social distancing measures, the need for the healthcare systems has dramatically increased and the effective management of infected patients becomes a challenging problem for hospitals. Thus, accurate short-term forecasting of the number of new contaminated and recovered cases is crucial for optimizing the available resources and arresting or slowing down the progression of such diseases. Recently, deep learning models demonstrated important improvements when handling time-series data in different applications. This paper presents a comparative study of five deep learning methods to forecast the number of new cases and recovered cases. Specifically, simple Recurrent Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), Gated recurrent units (GRUs) and Variational AutoEncoder (VAE) algorithms have been applied for global forecasting of COVID-19 cases based on a small volume of data. This study is based on daily confirmed and recovered cases collected from six countries namely Italy, Spain, France, China, USA, and Australia. Results demonstrate the promising potential of the deep learning model in forecasting COVID-19 cases and highlight the superior performance of the VAE compared to the other algorithms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32834633</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0960-0779</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>140</Volume>
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Chaos, solitons, and fractals</Title>
<ISOAbbreviation>Chaos Solitons Fractals</ISOAbbreviation>
</Journal>
<ArticleTitle>Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study.</ArticleTitle>
<Pagination>
<MedlinePgn>110121</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.chaos.2020.110121</ELocationID>
<Abstract>
<AbstractText>The novel coronavirus (COVID-19) has significantly spread over the world and comes up with new challenges to the research community. Although governments imposing numerous containment and social distancing measures, the need for the healthcare systems has dramatically increased and the effective management of infected patients becomes a challenging problem for hospitals. Thus, accurate short-term forecasting of the number of new contaminated and recovered cases is crucial for optimizing the available resources and arresting or slowing down the progression of such diseases. Recently, deep learning models demonstrated important improvements when handling time-series data in different applications. This paper presents a comparative study of five deep learning methods to forecast the number of new cases and recovered cases. Specifically, simple Recurrent Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), Gated recurrent units (GRUs) and Variational AutoEncoder (VAE) algorithms have been applied for global forecasting of COVID-19 cases based on a small volume of data. This study is based on daily confirmed and recovered cases collected from six countries namely Italy, Spain, France, China, USA, and Australia. Results demonstrate the promising potential of the deep learning model in forecasting COVID-19 cases and highlight the superior performance of the VAE compared to the other algorithms.</AbstractText>
<CopyrightInformation>© 2020 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zeroual</LastName>
<ForeName>Abdelhafid</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Faculty of technology, Department of electrical engineering, University of 20 August 1955, Skikda 21000, Algeria.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>LAIG Laboratory, University of 08 May 1945, Guelma 24000, Algeria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harrou</LastName>
<ForeName>Fouzi</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dairi</LastName>
<ForeName>Abdelkader</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>University of Science and Technology of Oran-Mohamed Boudiaf (USTO-MB), Computer Science department Signal, image and speech laboratory (SIMPA) laboratory, El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chaos Solitons Fractals</MedlineTA>
<NlmUniqueID>100971564</NlmUniqueID>
<ISSNLinking>0960-0779</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Data-driven</Keyword>
<Keyword MajorTopicYN="N">Deep learning</Keyword>
<Keyword MajorTopicYN="N">Forecasting</Keyword>
<Keyword MajorTopicYN="N">Gated recurrent units</Keyword>
<Keyword MajorTopicYN="N">Long short-term memory</Keyword>
<Keyword MajorTopicYN="N">Recurrent neural network</Keyword>
<Keyword MajorTopicYN="N">Variational autoencoder</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32834633</ArticleId>
<ArticleId IdType="doi">10.1016/j.chaos.2020.110121</ArticleId>
<ArticleId IdType="pii">S0960-0779(20)30518-X</ArticleId>
<ArticleId IdType="pii">110121</ArticleId>
<ArticleId IdType="pmc">PMC7362800</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Infect Dis Model. 2020 Feb 14;5:256-263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32110742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2020 Aug 10;729:138817</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32360907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chaos Solitons Fractals. 2020 Jun;135:109853</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32501370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Data Brief. 2020 Feb 26;29:105340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32181302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Med. 2020 Feb 22;9(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32098289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Comput. 1997 Nov 15;9(8):1735-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9377276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 29;395(10225):689-697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32014114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Biol Med. 2020 Jun;121:103805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32568679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biology (Basel). 2020 Mar 08;9(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32182724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 May;20(5):553-558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chaos Solitons Fractals. 2020 Sep;138:109926</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32501377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neural Netw. 2005 Jun-Jul;18(5-6):602-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chaos Solitons Fractals. 2020 Jun;135:109864</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32390691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 May;94:29-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chaos Solitons Fractals. 2020 Sep;138:110015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32565625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Immunol Infect. 2020 Jun;53(3):396-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32305271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chaos Solitons Fractals. 2020 Jul;136:109924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32501372</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Algérie</li>
<li>Arabie saoudite</li>
</country>
<region>
<li>Wilaya d'Oran</li>
</region>
<settlement>
<li>Oran</li>
</settlement>
</list>
<tree>
<country name="Algérie">
<noRegion>
<name sortKey="Zeroual, Abdelhafid" sort="Zeroual, Abdelhafid" uniqKey="Zeroual A" first="Abdelhafid" last="Zeroual">Abdelhafid Zeroual</name>
</noRegion>
<name sortKey="Dairi, Abdelkader" sort="Dairi, Abdelkader" uniqKey="Dairi A" first="Abdelkader" last="Dairi">Abdelkader Dairi</name>
<name sortKey="Zeroual, Abdelhafid" sort="Zeroual, Abdelhafid" uniqKey="Zeroual A" first="Abdelhafid" last="Zeroual">Abdelhafid Zeroual</name>
</country>
<country name="Arabie saoudite">
<noRegion>
<name sortKey="Harrou, Fouzi" sort="Harrou, Fouzi" uniqKey="Harrou F" first="Fouzi" last="Harrou">Fouzi Harrou</name>
</noRegion>
<name sortKey="Sun, Ying" sort="Sun, Ying" uniqKey="Sun Y" first="Ying" last="Sun">Ying Sun</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidFranceV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001157 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001157 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidFranceV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32834633
   |texte=   Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32834633" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidFranceV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 6 23:31:36 2020. Site generation: Fri Feb 12 22:48:37 2021